Exercise Sheet #10

Course Instructor: Ethan Ackelsberg Teaching Assistant: Felipe Hernández

- **P1.** Let $(X, \| \bullet \|_X)$ and $(Y, \| \bullet \|_Y)$ be a normed spaces and $L: X \to Y$ a linear function. Prove that the following are equivalent:
 - (a) L is bounded, i.e. that there is C > 0 such that for each $x \in X$, $||L(x)||_Y \le C||x||_X$,
 - (b) L is continuous,
 - (c) L is continuous at 0.
- **P2.** Show that norm vector spaces are topological vector spaces.
- **P3.** Let $I \subseteq \mathbb{R}$ be an interval, $\varphi: I \to \mathbb{R}$ a convex function. If $t \in \text{Int}(I)$, then $\exists m \in \mathbb{R}$ s.t.

$$\varphi(s) \ge m(s-t) + \varphi(t), \quad \forall s \in I.$$

P4. Let $p, q \in (1, \infty)$ conjugate exponents and $f \in L^p$. Show that

$$||f||_p = \sup_{||g||_q \le 1} \left| \int fg d\mu \right|.$$